سری های زمانی با تغییرات غیر نرمال و کاربردهای آن

پایان نامه
چکیده

رگرسیون چندکی توصیف کاملی از وابستگی توزیع شرطی y به متغیر تبیینی x ارایه می دهد، در حالی که رگرسیون معمولی فقط وابستگی میانگین شرطی متغیر پاسخ y به متغیر تبیینی x بررسی می کند. برآورد پارامترها در رگرسیون چندکی بر اساس تابع زیان نامتقارن برای جمله خطا است و مشابه برآورد پارامترها در رگرسیون کمترین توان های دوم خطا محاسبه می شود. ایده رگرسیون چندکی بیزی با استفاده از یک تابع درستنمایی بر اساس توزیع لاپلاس نامتقارن قرار داده شده است. مدل های رگرسیون چندکی دودویی و توبیت می توانند به عنوان رگرسیون چندکی خطی با پاسخ های پیوسته پنهان که به طور کامل مشاهده نشده اند، در نظر گرفته می شود. در حالت معمول سری زمانی را با جمله خطا نرمال در نظر گرفته شده است. در این پایان نامه از فرض غیر نرمال بودن جمله خطا استفاده نموده ایم و آن را به صورت نیمه پارامتری با تابع چندک نمایی در نظر گرفته ایم و سری زمانی با تغییرات غیر نرمال، در نظر گرفته شده است. روش مطرح شده با استفاده از یک سری داده های شبیه سازی و دو مجموعه واقعی شرح داده می شود.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

متن کامل

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

متن کامل

بررسی تغییرات پوشش گیاهی ایران با استفاده از سری های زمانی NDVI سنجنده NOAA-AVHRR و تجزیه وتحلیل هارمونیک سری های زمانی (HANTS)

بررسی تغییرات پوشش‌هایگیاهی می‌تواند اطلاعات ارزشمندی را در مورد گرمایش جهانی،چرخه کربن، چرخه آب و تبادل انرژی به همراه داشته باشد. استفاده از سری‌های زمانی تصاویر ماهواره‌ای و روش‌های ...

متن کامل

ارزیابی تغییرات تراز و غلظت نیترات آب های زیرزمینی دشت کبودرآهنگ با استفاده از سری های زمانی

منابع آب‌های زیرزمینی یکی از مهم‌ترین و باارزش‌ترین منابع آب به شمار می‌روند، شناخت صحیح و بهره‌برداری اصولی از آن‌ها به خصوص در مناطق خشک و نیمه‌خشک می‌تواند در توسعه پایدار بسیاری از فعالیت‌های کشاورزی، اجتماعی و اقتصادی آن منطقه تأثیر بسزایی داشته باشد. برای آگاهی از وضعیت نوسانات سطح و غلظت نیترات آب زیرزمینی در دشت کبودرآهنگ از مدل‌های سری زمانی برای پیش‌بینی وضعیت سطح آب‌زیرزمینی در طی سا...

متن کامل

بازسازی سری های زمانی داده های ماهواره ای دمای سطح زمین با استفاده از الگوریتم تجزیه و تحلیل هارمونیک سری های زمانی (HANTS)

دمای سطح زمین (LST) یکی از پارامترهای اساسی در مبادله انرژی بین زمین و اتمسفر است. در بسیاری از علوم مختلف از جمله اقلیم‌شناسی، هیدرولوژی، کشاورزی، اکولوژی، بهداشت عمومی و علوم زیست‌محیطی استفاده از سری­های زمانی LST کاربرد فراوان دارد. اما سری­های زمانی داده­های ماهواره­ای معمولاً دارای داده­های ناقص، از دست رفته و یا غیر قابل قبول هستند که این به دلیل حضور ابرها در تصاویر، وجود ذرات گرد و غبار...

متن کامل

واکاوی زمانی بارش سالانه شهر شیراز با استفاده از تحلیل سری های زمانی

بارندگی یکی از عوامل مهم هواشناسی است که مقدار آن به نحو چشمگیری در نقاط مختلف کره زمین تغییر می‌یابد. یکی از روش‌هایی که به کمک آن می توان سیر تحولات بارندگی را درگذشته و حال بررسی نمود، آنالیز روند سری‌های زمانی در مقیاس‌های مختلف زمانی است. در این تحقیق از متوسط بارش سالانه شهر شیراز برای مدل‌سازی و پیش‌بینی با استفاده از تکنیک تحلیل سری‌های زمانی استفاده‌شده است. برای این منظور از ایستگاه س...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023